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Organization of this talk.

* Part 1: Ensemble theory and nuts and bolts.
— Motivation for ensembles
— How we construct them.

— Advantages/disadvantages of some various
ensemble approaches.

e Part 2: Using ensembles for winter weather.



The Lorenz (1963)
dynamical system

do _ o
dt —O'y—fl:),
;l_il:x(p—z)—yw
dz f
E—xy—p"z.

A 3-dimensional dynamical system that
illustrates the property of “chaos.” Hereis a
picture of the Lorenz attractor. Start off with any
(x,y,z) value, and very quickly the state will

begin spiraling around in this reduced set

of points.

The atmosphere has an attractor. Were you foolish
enough to initialize a weather forecast model with an
80F temperature at the north pole, the forecast state would quickly cool.
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Yellow dots are points on the
Lorenz attractor. Follow a

set of initial conditions
within the ball. Here, a
relatively deterministic
forecast is possible.

c/o Tim Palmer, Oxford U.




Follow another close-by
set of initial conditions
within the ball. Now we
see more rapid growth
of errors.




Follow this set of
initial conditions
within the ball.
Here, an \
extremely rapid
growth of errors.




Weather forecasts can exhibit this extreme error growth, too.

Deterministic predictions | Verification

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours
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Lessons:

Trying to determine
which ensemble solution
is most likely isn’t a good
use of your time.

Prepare your users for

(at least) the variety of
weather that the ensemble
tells you.




A good thing to ask, though, is:
Is my ensemble providing me with a
realistic range of possible future
weather scenarios?

Suppose the observed was
at the red dot in each case.




Observed Frequency (%)
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Most of our current ensemble systems
have this problem, to varying degrees.

Reliability, Day +3 10.0mm
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The difference between a lower- and a
higher-quality ensemble prediction can matter.

Autumn snowstorm wallops Rockies, Plains

Updated 10/30/2009 3:37 AM | Comments | Recommend E-mail | Print | m

Enlarge By Bryan Oller, AP

Lon Rust clears snow from the sidewalk in front of his
business in Green Mountain Falls, Colo., on
Wednesday.

WINTER STORMS
USA Today, 30 Oct 2009

By Doyle Rice, USA TODAY Share
A record-setting snowstorm that dumped nearly
4 feet of snow across parts of the Rockies by
Thursday will threaten parts of the Midwest and
South today with heavy rain and flooding.

m Add to Mixx

n Facebook

The powerful fall storm forced hundreds of e Twitler

flights to be canceled in Denver and closed More
schools and major highways. Heavy snow fell

as far west as northern Utah's Wasatch Front ~ >ubscribe
to western Nebraska's northern border. In

South Dakota, snow shut down the Mount “¥p myYahoo
Rushmore National Memorial. A blizzard g iGoogle
warning was in effect until morning in northwest S
Kansas. oo

The heaviest snow was reported in the foothills west of Denver,
near Pinecliffe, Colo., with 43.8 inches by midday Thursday,
according to the National Weather Service. October snow records
were set for Cheyenne, Wyo., and Fort Collins, Colo.

Here’s the sort of high-impact event it would be extremely useful to
be able to have advanced warning of at the weather-climate timescales.
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Massive bust of day +5 NCEP global deterministic;
totally misses jet stream pattern

091024/0000F120 v 091029/0000F000
-36 =27 -18 -9 9 18 27 36

I I | I — ]

500-hPa geopotential height (black, dam), 120-h forecast (red,
dam), and 120-h Forecast — Analysis (shaded, dam)

Perhaps small initial condition errors led to the bust?
What about ensemble systems?

13
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“Spaghetti plots”, NCEP ensemble

(546 dam contour, + 5 day forecast)

500 hPa Geopotential Height Spaghetti Plot for NCEP, 00Z 24 Oct 2009 IC

>
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NCEP ensemble has only a hint in a few members
of a major system affecting the southwest US.
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“Spaghetti plots”, ECMWF ensemble

(546 dam contour + 5 day forecast)

500 hPa Geopotential Height Spaghetti Plot for ECMWF, 00Z 24 Oct 2009 IC
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ECMWEF system much better at predicting event in central Rockies. Lessons:

(1) Probabilistic, not deterministic forecasts, are definitely needed.

(2) A high-quality ensemble prediction system is a necessity for weather-climate prediction.
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“Spaghetti plots”, ECMWF ensemble

(546 dam contour + 5 day forecast)

500 hPa Geopotential Height Spaghetti Plot for ECMWF, 00Z 24 Oct 2009 IC
I

Lessons for winter weather course:
(1) The ensemble tells you a lower bound
on the range of possible future states.
Actual uncertainty is likely a bit larger
than that estimated by current-
generation ensemble systems.
(2) If you have the data and you have the
time, consider guidance from other
ensemble systems.

ECMWEF system much better at predicting event in central Rockies. So:
(1) Probabilistic, not deterministic forecasts, are definitely needed.
(2) A high-quality ensemble prediction system is a necessity for weather-climate prediction.



Ways to create ensembles
(not mutually exclusive)

Multiple deterministic forecasts: “poor-man’s ensemble”

Vary the initial conditions (“EnKF,” “ETR,” “Singular vector,” “bred
modes,” “multi-analysis” — we’ll discuss principles in a moment) and
generate an ensemble with your forecast model.

Multiple models.
Multiple physical parameterizations within a model.

Stochastic physics — build random processes right into the physical
equations of the forecast model.

With a global model, or with a regional model.

What are the guiding principles?
To use them wisely, it helps to understand right
(and sometimes wrong) ways they are generated.



Scientifically, what must be done to
produce high-quality ensembles?

ensemble t=t+At

members’
trajectories

reality

If this situation happens more than infrequently,
we need to improve our ensemble prediction system
(that’s my job)
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Scientifically, what must be done to
produce high-quality ensembles?

ensemble t=t+At

members’
trajectories

Problem 1: Specifying
the initial conditions
t=0

Theory tells us we want to
sample the ensemble from
the distribution of plausible
analysis states. How do we
do that? How big should
the differences be. What
structure should they have?

reality

19



Are analyses uncertain?

A time series of analyses in the central US

2-meter temperature (K) @100.0W 40.0N

| — ECMWF 287.8( 1 ‘ ‘ ¥ ¥ I . . .
310} - - cmA288.9 Looking at this plot, the various
| T cfc 2884 line colors overlap quite a bit,
— - NCEP 286.8 . .
| — UKMO 288.2 suggesting that the differences
300F| ‘ ‘

have a substantial random
component. However, looking

at the yearly averaged temperature
(listed in the box in the upper left),
notice for example that NCEP’s
analysis is > 2 K colder than CMA’s,
on average.
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Time series of analyses,
central US (smoothed)

2-meter temperature (K) @100.0W 40.0N (smoothed)
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Here smoothed using
average of +/- 15 days.

Warmer CMA analyses
in last 4 months stands out.

Even in a relatively data-rich
region, there are apparent
biases in analyses — there isn’t
agreement on what even the
average analyzed temperature
should be over the data-rich
central US.

Perturbing initial conditions
of surface temperature by
a degree or two seems warranted.



t potential energy

Power spectra from analysis data

ECMWEF used for base state; ECMWF - NCEP used for differences, a surrogate
for analysis errors. Spectra computed daily, then averaged over the full year.

T @ 500 hPa

(a) Power spectrum of temperature at 500 hPa

| @@ Base state
@—@ Differences between centers ||

——————————————— \mer—i—dional—wéve—zrdominat—es————~———~————~———f
(cold pole, warm equator)
-winter/ N\ PR
summer

u-component kinetic energy

U @ 250 hPa

(b) Power spectrum of u-component at 250 hPa

| @@ Base state
®—® Differences between centers 7

wavett 4 dominant

10! 102

Total wavenumber

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R 10'4 -

10° 1(;1 10? 10_5100
Total wavenumber
(1) Larger analysis “errors” (i.e., differences) at larger scales than at smaller scales, but ...
(2) Large signal-to-noise ratio (S/N) at large scales, small S/N at smaller scales.
(3) Are analysis errors really that large at the largest scales? Probably yes for some models
with larger biases, no for others with smaller biases (e.g., ECMWF).

(4) Analysis errors will have some large-scale correlation structure to them. Not random at

every grid point.
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t potential energy

Power spectra of ensemble
perturbations, NCEP ensemble

5 () NCEP pov‘ver‘sp‘ec‘tr‘u‘m ’of temp‘eratgre‘at‘S(‘)(‘) hPa 10° (b) NCEE power ‘sp‘ec‘tr‘u‘m‘ pf u-compon‘ent‘ a’; 2‘5(‘) hPa
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(1) Suggests this ETR perturbation method used at NCEP may have insufficient power at
planetary scales. This is consistent with the assumption made in the ETR that the analysis
is unbiased while analyses between different centers suggest there is bias.
(2) ETR’s underestimate of initial amplitude is the least for the small baroclinic scales.
This may be because the breeding method inside the ETR generates perturbations

that project onto the (finite amplitude) Lyapunov vectors, dominated by baroclinic scales.
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Power spectra of ensemble
perturbations, CMC ensemble

0° (a) CMC power spectrum of temperature at 500 hPa 10° (b) CMC power spectrum of u-component at 250 hPa
|®—e Base state ] {®—e Base state
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Reasonably well calibrated overall for T500; a bit of an overestimate of variance for U250.
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So, we want to generate

a range of plausible analyses
to initialize the ensemble.
What are the principles?

* |nitialize from multi-analyses?

— only a handful of analyses available. What if we
want to generate 20 or 50 ensemble forecasts?

— also: data sharing might be problematic.



Data assimilation:

producing multiple possible analyses for initializing an ensemble

observations | | pservation-error
for time t / statistics
forecast for data || state estimate R weather forecast for
time t assimilation for ime t forecast time t+At
model
+ forecast-error + analysis-error
statistics statistics

To get a reasonable estimate of the state and its uncertainty,
we need observations, forecast(s) and we need to simulate the

effects of observation-error statistics and forecast-error statistics.
26



The ensemble Kalman filter: a schematic

(a way to simulate sources of uncertainty in analyses)

—— Observations —— Observations
#1 Perturbed #1 Perturbed
Observations Observations
member member 1 Forecast member 1 __|
forecast analysis > Model forecast EnkF
#2 Perturbed » #2 Pertur_bed
Observations Observations
(This schematic
is a bit of an
orecast analysis forecast simplification,
for EnKF uses
every member
#3 Perturbed #3 Perturbed .

—> Observations Observations to estimate
background-
error covariances)

member 3 member 3 Forecast member 3
forecast analysis Model forecast EnKK o7




The ensemble Kalman filter (EnKF) : a schematic

member 1
forecast

member 2 _
forecast

—— Observations

#1 Perturbed
Observations

uncertainty in the observations
is simulated by adding noise

to the control observations
(consistent with error statistics)
to create distinct sets of
“perturbed observations”

member 3
forecast

—— Observations

#1 Perturbed
Observations

EnKF

. #2 Perturbed

Observations

EnKF

member 1 Forecast member 1 __
analysis P Model > forecast
#2 Perturbed
Observations
member 2 Forecast member 2 __|
EnKF ‘ analysis Model > forecast
. #3 Perturbed
Observations
member 3 Forecast member 3
analysis Model  [* forecas

#3 Perturbed
Observations

(This schematic

is a bit of an
inappropriate
simplification,

for EnKF uses
every member

to estimate
background-
error covariances)
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The ensemble Kalman filter (EnKF) : a schematic

o

member 1
forecast

member 2 _
forecast

—— Observations

uncertainty in the forecasts

4 #2 Perpfrbed
Obserfations

member 3
forecast

_ #3 Perturbed

Observations

is simulated by conducting — Obscrvations
parallel forecasts with
presumably slightly different
prior forecasts #1 Perturbed
Observations
member 1 Forecast member 1 __
analysis > Model forecast EnKF
|y #2 Perturbed
Observations
member 2 Forecast member 2 ___
analysis Model forecast EnKF
#3 Perturbed
Observations
member 3 Forecast member 3
analysis Model forecast

(This schematic

is a bit of an
inappropriate
simplification,

for EnKF uses
every member

to estimate
background-
error covariances)
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The ensemble Kalman filter (EnKF) : a schematic

member 1
forecast

member 2 _|
forecast

—— Observations

#1 Perturbed
Observations

In this schematic, the same forecast

model is used in all simulations.

Hence we may be missing something,
a missing simulation of another source
of uncertainty due to forecast

systematic errors. \,

#2 Perturbed
Observations

member 3
forecast

#3 Perturbed
Observations

EnKF

—— Observations

#1 Perturbed
Observations

EnKF

. #2 Pertur_bed
Observations

EnKF

#3 Perturbed

member 1 > Forecast member 1 __
analysis Model forecast
member 2| | Forecast member 2 ___
analysis Model forecast
member 3 > Forecast member 3
analysis Model forecast

Observations

(This schematic

is a bit of an
inappropriate
simplification,

for EnKF uses
every member

to estimate
background-
error covariances)
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The ensemble Kalman filter (EnKF) : a schematic

member 1
forecast

member 2 _
forecast

—— Observations

#1 Perturbed
Observations

#2 Perturbed
Observations

We might do something

like this:

random
pattern

member 3
forecast

_ #3 Perturbed

Observations

EnKF

—— Observations

#1 Perturbed
Observations

EnKF

. #2 Perturbed

Observations

EnKF

member | Forecast member 1 __
analysis Model forecast
random
pattern
member 2 Forecast member 2 ___
analysis Model forecast
random
pattern
member 3 > Forecast member 3
analysis Model forecast

#3 Perturbed
Observations

(This schematic

is a bit of an
inappropriate
simplification,

for EnKF uses
every member

to estimate
background-
error covariances)
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Scientifically, what must be done to
produce high-quality ensembles?

t=t+At

ensemble
members

Problem 2: Dealing with

reality model error and uncertainty

32



Methods for dealing with model
uncertainty

 Make the forecast modeling system better

— higher resolution, explicit rather than parameterized
convection, better observations, better assimilation
methods.

 Don’t assume your model is perfect:

— Use multiple forecast models or multiple
parameterizations.

— Add stochastic terms to the forecast model.

* Post-process the guidance. Compare past
forecasts to observations/analyses, use this to
correct probabilities in the current forecast.



Multi-model vs.
statistical post-processing.

* Let’s look at the characteristics of probabilistic
precipitation forecasts over the US during

2010.

 Multi-model: 20 members each from NCEP,
CMC, UK Met, ECMWEF.

 Compare against ECMWEF forecasts that have
been post-processed using “logistic
regression” and 2002-2009 rainfall analyses
and ECMWEF reforecasts.



NARR analyzed amount (mm)

Post-processing / reforecasting concept

Forecast vs. analyzed precipitation,
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Run the forecast model for many dates in the past. Use relationship between past
forecasts and observations to correct today’s forecast. In subsequent slides,
a “logistic regression” was used to post-process the probabilities.
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(a) Brier Skill Scores, 1 mm

Forecas t Lead (days)

(b) Brier Skill Scores, 10 mm

e o ECMWF
e o NCEP
e o UKMO

—

.______——0—"’————' o ———

1 2 3 4 5
Forecast Lead (days)

(c) Continuous Ranked Probability Skill Scores

Skill scores of
various 20-member
ensembles

5th and 95t percentiles using
block bootstrap algorithm
following Hamill, W&F, 1999.

ECMWEF generally the most skillful,

though CMC makes similarly skillful
10-mm forecasts.

NCEP and UK Met Office trail.
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Observed Frequency (%)
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Inset histogram

tells you how often
each probability was
issued. Black bars
for distribution of
climatological
probabilities for

grid points within
the CONUS

37



Observed Frequency (%)

Observed Frequency (%)

Reliability, Day +3 10.0mm
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(a) Analyzed precipitation 00 UTC 2010/07/21

(b) ECMWF 10-mm day +3 forecast

YU
EY

I

1 2.5 [} 10 25 50
Analyzed precipitation_ amount (mm)

YU

5

p=

40 60 ?0 90
Probability Z)

100

(c¢) NCEP 10—mm day +3 forecast

(d) CMC 10—mm day +3 forecast

YU
Y

=N

YU
Y

10 20

40 60 ?0 90
Probability (%)

100

10 20 40 60 ?0 90
Probability (%)

100

(e) UK Met Office 10—mm day +3 forecast

(f) Multi—-model 10—-mm day +3 forecast

YU
®

=N

YU
»

40 60 ?0 90
Probability (%)

40 60 ?0 90
Probability (%)

Example:
where
multi-model
won’t help.

Positional biases are
similar in all the models;
each is too far north.

(of course, you don’t
know in advance that
the forecast consistency
was unrealistic!)
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(a) Analyzed precipitation 00 UTC 2010/08/11

(b) ECMWF 10-mm day +3 forecast
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Analyzed precipitation amount (mm)
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(d) CMC 10—mm day +3 forecast

(c¢) NCEP 10—mm day +3 forecast

T
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§
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by

100
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Probability (%)

10 20 40 60 ?0 90
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(e) UK Met Office 10—mm day +3 forecast

(f) Multi—-model 10—-mm day +3 forecast
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§
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.j\

100

100

40 60 ?0 90
Probability (%)

40 60 ?0 90
Probability (%)

Example:
where
multi-model
should help.

Positional biases are
different; NCEP south,
ECMWEF north.
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BSS

BSS

CRPSS

(a) Brier Skill Scores, 1 mm
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0.0

Forecas t Lead (days)

(b) Brier Skill Scores, 10 mm

PO e Multi—-model / Cal
0.6 o — — — ¢ Multi-model

Forecast Lead (days)

(c) Continuous Ranked Probability Skill Scores
0.7 T T T T T

0.6

0.5
0.4

0.3
0.2

0.1

0.0

Skill scores for
multi-model and
reforecast-calibrated

Notes:

(1) Impressive skills of multi-model.
(2) Reforecast calibration doesn’t
improve the 1-mm forecasts much,
improves the 10-mm forecasts a lot.
(3) Calibration of multi-model using
prior 30 days of forecasts doesn’t
add much overall.
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Observed Frequency (%)
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calibrate
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Multi-model slightly under-forecasts probabilities at 1.0 mm
and is quite reliable. It is also substantially sharper than
reforecast-calibrated, which has slightly greater under-forecast bias.
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Multi-model slightly over-forecasts probabilities, and is substantially
sharper. Reforecast calibrated slightly under-forecasts and is less sharp.



Forecast example: 21 July 2010

(a) Analyzed precipitation, 00 UTC 2010/07 /21 (b) ECMWF 10—mm day +3 forecast
N = S U <

100

\ | | - 4\ \
1 2.5 S 10 25 50
Analyzed precipitation amount (mm) \

(¢) Multi—-model 10—mm day +3 forecast (d) ECMWF /reforecast 10—mm day +3 forecast

DU YU
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Probability (%)

desirable reduction of probabilities outside
region where > 10 mm occurred.
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Forecast example: 11 August 2010

(a) Analyzed precipitation, 00 UTC 2010/08/11
T U ~

(b) ECMWF 10—mm day +3 forecast
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(¢) Multi-model 10-mm day +3 forecast (d) ECMWF/rleecos’r 10—mm day +3 forecast
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no position shifts possible with this
logistic regression post-processing technique
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New! 2012 GEFS reforecast data set

Developed by ESRL (on DOE computers) for 2012
NCEP GEFS.

Every day, 1985-present, we have 11-member
ensemble reforecasts computed to day + 16 using
operational T254/T190 NCEP GEFS for 00Z cycle.

CPC, EMC, HPC, MDL using this data for product
development. More to follow. We hope to
attract companies and universities, forecast
offices to explore using it also.



Version 2 (2012 GEFS)

Reliability, > 10 mm precipitation 24 h!

Day +0-1 Day +2-3 Day +4-5

Reliability, reforecast v2, day +2-3, 10.0 mm Reliability, reforecast v2, day +4-5, 10.0 mm

Reliability, reforecast v2, day +0-1, 10.0 mm
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We can make very reliable (and skillful) probabilistic precipitation forecasts by
post-processing the GEFS using the reforecasts.
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Example: improving deterministic precipitation
forecasts with statistical post-processing.
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The bad and ugly atmospheric rivers case study

February 16, 2004 12-24 UTC
SSMI Water Vapor (Wentz algorithm)

55N

45N

35N

25N

110E 130E 150E 170E 170W 150W 130W 110W

g/cm’

» 10” rain in the coastal mountains, 4-7” in Russian River

watershed. Streamflows in top 0.2% of historical observations.
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(a) 24-h accumulated precip analysis, (b) 3-4 day mean forecast,
VT = 2004021700 Reforecast v2, VT =2004021700

4-day
forecast

0 01 05 1 25 5 10 25 50 100 150 0 01 05 1 25 5 10 25 50 100 150
Analyzed precipitation amount (mm) Ensemble-mean forecast amount (mm)
(c) P(3-4 day accum precip > 10 mm), (d) P(3-4 day accum precip > 50 mm),

Reforecast v2, VT = 2004021700 Reforecast v2, VT = 2004021700
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=

44‘3:'

% i

Q

{
,ﬁ

. '*‘,j“
| Wl
(AN 4 A
3 D)
'/: ;

l

TN

(c) Pert 1, 096-h forecast

N
RGO

15

(d) Pert 2, 096-h forecast

T

e

]
/

(h) Pert 6, 096-h forecast
== % g

(2

s

it
oS

4-day
forecast

54



Case study, tentative conclusions

 Statistical post-processing will not be able to
correct for everything. In this case, the
synoptic-scale predictability was apparently
quite low.

* Improvements to post-processed probabilistic
forecasts in such a case will require improved
ensemble guidance.



The “good” atmospheric rivers case study:
Nov 2006 Oregon-Washington floods

November 07, 2006 00-12 UTC
SSMI Water Vapor (Wentz algorithm)

55N
45N
35N
25N

15N

5N : , ~
110E 130E 150E 170E 170W 150W 130W  110W

g/cm?
8-20 inches of rain in Cascades; flooded rivers; extensive damage to Mt. Rainier NP.
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(a) 24-h accumulated precip analysis, (b) 3-4 day mean forecast,
VT = 2006110700 7 Reforecast v2, VT =2006110700

%7

4-day
forecast
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Analyzed precipitation amount (mm) Ensemble-mean forecast amount (mm)
(c) P(3-4 day accum precip > 10 mm), (d) P(3-4 day accum precip > 50 mm),

Reforecast v2, VT = 2006110700 Reforecast v2, VT = 2006110700
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(a) Analysis, VT=2006110700 (b) Control, 096-h forecast (c) Pert 1, 096-h forecast (d) Pert 2, 096-h forecast
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A few words about regional ensembles

 Benefits:

— you can probably afford much higher resolution than
you can with global ensemble, so less model error.

* Disadvantages: boxed in.

— use of regional models in general causes some
problems; errors can’t propagate up to planetary
scales; lateral boundary conditions introduce errors;
may be inconsistencies between global and regional.



Regional ensembles
and explicit convection

An example from NSSL-SPC Hazardous Weather Test Bed, forecast initialized 20 May 2010
http://tinyurl.com/2ftbvgs

30-km SREF P > 0.5” 4-km SSEF P > 0.5 “ Verification

i P
TARNY

|
. g

{ ey { {
100521 /D000Y027 SREF 6—hr QPF Prob >0. 100521 /0000v024 SSEF PROB EH S5 1n 20100521 /00 UTC 6—HR QPE > O.
10 50 3 10 30 50 T 0.50 1.00 1.50 2.00 3.00 5.0( .00 39.00

With warm-season QPF, coarse resolution and parameterized convection of SREF clearly
inferior to the 4-km, resolved convection in SSEF.
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Conclusions (part 1)

* Producing a high-quality ensemble for you
takes more than slapping a few forecasts

together.

* We need to (and are) designing ensembles
that address initial-condition uncertainty and
model error.



